skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gholivand, Hamed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Bandgap engineering plays a critical role in optimizing the electrical, optical and (photo)‐electrochemical applications of semiconductors. Alloying has been a historically successful way of tuning bandgaps by making solid solutions of two isovalent semiconductors. In this work, a novel form of bandgap engineering involving alloying non‐isovalent cations in a 2D transition metal dichalcogenide (TMDC) is presented. By alloying semiconducting MoSe2with metallic NbSe2, two structural phases of Mo0.5Nb0.5Se2, the1Tand2Hphases, are produced each with emergent electronic structure. At room temperature, it is observed that the1Tand2Hphases are semiconducting and metallic, respectively. For the1Tstructure, scanning tunneling microscopy/spectroscopy (STM/STS) is used to measure band gaps in the range of 0.42–0.58 at 77 K. Electron diffraction patterns of the1Tstructure obtained at room temperature show the presence of a nearly commensurate charge density wave (NCCDW) phase with periodic lattice distortions that result in an uncommon 4 × 4 supercell, rotated approximately 4° from the lattice. Density‐functional‐theory calculations confirm that local distortions, such as those in a NCCDW, can open up a band gap in1T‐Mo0.5Nb0.5Se2, but not in the2Hphase. This work expands the boundaries of alloy‐based bandgap engineering by introducing a novel technique that facilitates CDW phases through alloying. 
    more » « less